
Efficient Scheduling of Behavior-Processes on Different Time-Scales

Andreas Birk and Holger Kenn

Vrije Universiteit Brussel, Artificial Intelligence Laboratory,

Pleinlaan 2, 1050 Brussels, Belgium

final version in:

International Conference on Robotics and Automation, ICRA, IEEE Press, 2001

Abstract

In behavior-oriented robotics, the control of a system is

distributed over various processes or behaviors running

in virtual parallel. But the assignment of processing

power to different processes is a non-trivial task. Ex-

isting approaches to this problem like rate-monotonic

scheduling focus on the fulfillment of deadlines, i.e.,

upper time-bounds. For behavioral control, the peri-

odicy of processes is also of interest. Here, a novel

scheduling algorithm for behavioral processes at dif-

ferent time-scales is introduced, which ensures time-

optimal and periodically balanced execution.

1 Introduction

Behavior-oriented robotics has matured in the last
15 years from a scientific critic of “classical” AI
[Bro86, Bro91, Ste91] into a wide robotics field [CA98]
including a range of applications [Bir98]. As pointed
out in [Ste94], the notion of behavior is used within a
wide range of interpretations. Nevertheless, the com-
mon property of all behavior-oriented systems is that
the overall control of the system is distributed over
various processes running in virtual parallel. A major
technical problem with this approach is that it needs
scheduling, i.e., a scheme to assign processing power
to different behavior-processes such that they seem to
run in virtual parallel.

Existing behavior-oriented programming languages
like the subsumption architecture [Bro86, Bro90] or
motor schemas [Ark87, Ark92] came out of early sci-
entific work in the field of behavior-oriented robotics.
Accordingly, they did not incorporate any considera-
tions on efficiency or software-engineering, forcing the
user to do a lot of hand-tailoring for each particular
application, especially in respect to scheduling. As
a consequence, these languages are not widely dis-
tributed. Instead, the complete software environment

for every behavior-oriented project around the globe
is usually developed from scratch.

Scheduling is a major research topic in a completely
different scientific area, namely the field of real-time
systems [BW97, Mel83, You82], which provides a
wide range of solutions to the problem. One ap-
proach for behavior-oriented robotics accordingly is to
use a real-time operating-system and programming-
language and to build the control-behaviors on top.
The problem is that standard real-time approaches,
especially the widely used rate-monotonic scheduling
[LL73, LSD89], focus on the fulfillment of deadlines,
i.e., upper time bounds for the execution of the pro-
cesses. For control, it is in addition of interest that
behavior-processes are executed as regular as possible,
i.e., the periodicity plays a significant role.

Here, a novel scheduling algorithm, the so-called B-
scheduling, is presented which handles behaviors run-
ning on different time-scales represented through so-
called exponential effect priorities. These special pri-
orities allow our special algorithm to achieve both de-
sired features for behavior-scheduling, namely time-
optimal and periodically balanced execution.

2 Behaviors and Time-Scales

Behavioral processes in general can span very different
time-periods. The pulse-width-modulation (PWM) as
speed-control has for examples to operate for some
DC-motors in the 20 kHz range, i.e., on a time-basis
of 5 ·10−5 seconds. A behavior monitoring batteries in
contrast operates on a scale of minutes. Some adaptive
or learning behaviors could operate on much higher
scales like hours or even days.

We hypothesize that in general it is desirable to span
several orders of magnitude of time-periods. A linear
priority scheme is not suited for this. Therefore, so-
called exponential effect priorities are introduced here.
The idea is that for each increase in a priority-value
by one, the periodicity is halved.

In the remainder of this paper the following nam-
ing conventions are used: the set of processes: P=
{p0, ..., pN−1}, the priority-value of process pi: pv[pi],
the set of processes with priority k or the k-th pri-
ority class: PCk, and the highest used priority-value:
maxpv.

The exact semantic of a priority-value pv[pi] of process
pi within exponential effect priorities is:

• pv[pi] = 0 ⇐⇒ pi is executed with the maximum
frequency f0

• pv[pi] = n ⇐⇒ pi is executed with the frequency
fn which is half the frequency of the previous
priority-class, i.e., fn = fn−1/2

3 The Chores of Scheduling

For solving the task of finding a suitable order of ex-
ecution of the processes, we use a cyclic executive

scheduling approach [BW97]. This means there is a
so-called major cycle, which is constantly repeated.
The major cycle consists of several so-called minor

cycles. Each minor cycle is a set of processes, which
are executed when the minor cycle is activated.

The general problem of finding a suitable sched-
ule within this approach is NP-hard as it can be
reduced to the Bin-Packing-problem in a straight-
forward manner. We present an extremely efficient,
namely linear-time algorithm, which is based on the
restriction to exponential-effect-priorities. As moti-
vated above, we do not see this as a limitation, but
even as a feature.

Before the algorithm for behavior scheduling or B-

scheduling is presented, an example is considered to
illustrate the problems involved in scheduling. Figure
1 shows a simple algorithm, which schedules behaviors
based on their priorities. The major cycle is simply a
loop proceedings in rounds. The minor cycle simply
executes all processes of priority-class PCk in every
round which is a multiple of 2k.

The major problem with this algorithm is illustrated
in figure 2. Assume there is a single process p0.1 with
priority 0 and n processes p1.i with priority 1. So,
#PC0 = 1 and #PC1 = n. The first minor cycle
consists of p0.1. As S1 executes all processes of a
priority-class together, the second minor cycle includes
all processes with priority 0 and priority 1 , i.e., this
minor cycle has n + 1 processes. From a naive view-
point, we can simply say that the processes are badly
distributed.

low
balanceunlimited

distance (n+1)
fixed

distance (1)

minor minor
cyclecycle

process with pv = 1
n x

1x
process with pv = 0

p0.1

p0.1

p0.1

p0.1p0.1p0.1 p0.1

p1.1 p1.n
p1.i

p1.1 p1.1p1.n p1.n

major cycle

Figure 2: The simple scheduler S1 leads to a so-called
unbalanced execution. One minor cycle can consist
of a single process p0.1 while a second minor cycle
contains unlimited many other processes. Hence, the
execution of p0.1 is not evenly spread.

unlimited (n)

balanced

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

minor cyclecycleminor

1x
process with pv = 0

idle

p1.ip0.1

time

process with pv = 1
n x

p0.1

p0.1

p1.np1.1p0.1

p0.1 p0.1p1.1 p1.1p1.n p1.n

unlimited idleness

p0.1

major cycle

Figure 3: Adding idle-time to balance the schedule
made by S1 can lead to an unlimited waste of time.

1 /* Execute the Major Cycle */

2 for(round = 0; round < nmic; round = round + 1) {

3 /* Execute the Minor Cycle */

4 ∀pid ∈ P : {

5 if(round modulo 2pv[pi] == 0) {

6 execute pid

7 }

8 }

9 }

Figure 1: A simple scheduler S1 which is very inefficient.

In a more formal approach, the so-called balance of a
schedule S is defined as

balance(S) = min
min dist(pi, x)

max dist(pi, y)

with dist(pi), z) is the number of processes which are
executed between start of the execution of pi in cycle
z and its next execution in cycle z +2pv[pi]. If the bal-
ance is one then the schedule manages an equidistant
spreading of every process over the cycles. If the bal-
ances is close to zero than there is at least one process
which is very unevenly executed.

A small balance is very bad. As illustrated in the
above example, a process with low priority-value, i.e.,
a process which should be executed very often, has
to wait for an unbounded time-period. This is also
expressed by the balance of S1 which is in this case:

balance(S1) =
1

n
= 0 for n → ∞

The balance of S1 can be improved by adding idle-time
as illustrated in figure 3. This way, the balance can
even be tuned to reach the optimum of one. But this
is bought at the cost of an unlimited waste of time.
The idleness as the sum of idle-times in a major cycle
is now unbounded.

In general, a schedule S is time-optimal if and only if
the idleness is zero.

4 Properties of B-Scheduling

The workload WL within a major cycle can be com-
puted as the sum of the occurrences of each process,
i.e.,:

WL =
∑

0≤i≤maxpv

#PCi · 2
maxpv−i

The number nmic of minor cycles per major cycle is
determined by the highest priority-value maxpv as the
process or the processes with this priority has/have to
be executed once per major cycle. It follows that the
average number av of processes per minor cycle has to
be

av = WL / nmic with nmic = 2maxpv

For an even distribution of the workload, the actual
number of processes in a minor cycle has to be equal
to the average number av. Unfortunately, av is not
necessarily an integer. Therefore, we define

perfect = ⌈av⌉ and dirty = ⌊av⌋

A so-called perfect minor cycle has perfectly many
processes, whereas the number of processes in a dirty

minor cycle accordingly is dirty. A bad minor cycle

includes more than perfect or less than dirty many
processes. B-scheduling computes a schedule SB such
that

1. SB is time-optimal

2. the major cycle consists only of perfect and dirty
minor cycles

3. the processes are distributed over the cycles in
an optimal manner, i.e., pi is executed in cycle
c + 2pv[pi] if and only if pi is executed in cycle c

1 /* Initialization */

2 /* computing the initial wait-values for each process pid */

3 quicksort(P)

4 pc = 1

5 start = 0

6 nslots = 1

7 ∀i ∈ {0, ..., maxpv − 1} : {

8 start = 2 · start

9 nslots = 2 · nslots

10 ∀id with pv[pid] = pc : {

11 wait[pid] = reverse((start + id) modulo nslots)

12 }

13 start = (start + #{pid | pv[pid] = pc}) modulo nslots

14 pc = pc + 1

15 }

Figure 4: The initialization of B-scheduling.

1 /* Execute the Major Cycle */

2 for(round = 0; round < nmic; round = round + 1) {

3 /* Execute the Minor Cycle */

4 id = 0

5 done = 0

6 while((done < perfect) ∧ (id < #P)) {

7 if(wait[pid] == 0) {

8 execute pid

9 wait[pid] = 2pv[pid]

10 done = done + 1

11 }

12 id = id + 1

13 }

14 ∀pid ∈ P : if(wait[pid] > 0) : wait[pid] = wait[pi] − 1

15 }

Figure 5: The execution of a B-schedule.

It follows from properties 2 and 3 that S is well bal-
anced as

balance(SB) =
dirty + 1

perfect + 1

= 1 for av → ∞

The worst-case balance of SB is 1/2 when only two
processes are used and one is more frequent than the
other. In general, the balance becomes better the more
work-load is handled in each minor cycle. It can be
shown that any time-optimal schedule S has to consist
of a set of dirty and perfect cycles. Hence, SB provides
the best balance that is possible.

5 The Heart of B-Scheduling

Figure 4 and figure 5 show the critical parts of B-
scheduling in a pseudo-code. An important variable
in both parts is wait[pid]. It specifies for each process
pid how long it has to wait in number of cycles until
it is executed again. During the execution of a B-
schedule (figure 5), wait is constantly decremented in
each cycle. When a process pid is executed, its wait
wait[pid] is set to 2pv[pid]. Therefore, the execution
of pid is spread evenly other the minor cycles in the
major cycle.

The dynamic execution part of a B-schedule (figure
5) is more or less straightforward. The “real magic”
is done in the static initialization of the wait-values
(figure 4). Note that the initial value of wait[pid] de-
termines in which minor cycle pid will be executed for
the first time. So, computing suited initial waits pro-
duces a B-schedule. Note, that the number of wait-
values is equal to the number of processes #P . So,
the complete schedule which is of size O(2#P) is rep-
resented in a single variable in each processes, i.e., in
the overall size O(#P).

Before discussing the initialization of the wait-values
in more detail, a special command from figure 4 has
to be explained. The reverse() is used to reverse
the bit-order of a binary number. More concretly, let
Bn = [b0, ..., bn−1] and Rn = [r0, ..., rn−1] denote two
binary numbers, each represented as array of bits bi,
respectively ri. The function reverse() is then de-
fined as:

reverse(Bn) = Rn with ri = bn−i

The main idea when computing suited initial wait-
values is as follows. Imagine a set S of natural num-
bers with a cardinality equal to a power of 2. Let

minor cycle processes within
number the cycle

0 p1.1 p1.3 p3.1
1 p1.2 p2.1
2 p1.1 p1.3 p4.3
3 p1.2 p2.2
4 p1.1 p1.3 p4.1
5 p1.2 p2.1
6 p1.1 p1.3
7 p1.2 p2.2
8 p1.1 p1.3 p3.1
9 p1.2 p2.1
10 p1.1 p1.3
11 p1.2 p2.2
12 p1.1 p1.3 p4.2
13 p1.2 p2.1
14 p1.1 p1.3
15 p1.2 p2.2

Table 2: A simple example of a major cycle computed
with B-scheduling. The notation pX.Y denotes pro-
cess number Y within priority-class PCX . Note that
there is no straight-forward distribution of dirty and
perfect cycles, i.e., minor cycles which consist in this
example of either two or three processes.

name p1.1 p1.2 p1.3 p2.1 p2.2 p3.1 p4.1 p4.2 p4.3
pv[] 1 1 1 2 2 3 4 4 4

2pv[] 2 2 2 4 4 8 16 16 16
wait 0 1 0 1 3 0 4 12 2

Table 1: A set of processes with their priority-values pv[], their according waiting-time between executions, and
their initial wait values calculated with the algorithm shown in figure 4. The wait values lead to the schedule
shown in table 2 when the B-scheduler 5 is invoked.

S(start, d) denote a sequence which begins at the
number start and “jumps” further to numbers x which
are distance d away, i.e., x = (k · d)modulo#S with
k ∈ NI . When start and d are powers of 2, S is
called harmonic. It holds that for each harmonic list
S, we can create two harmonic lists S1 and S2 such
that S = S1 ∪ S2, namely:

• S1 = S(start, 2 · d)

• S2 = S(start + d/2, 2 · d)

The overall set S can be expressed as S(0, 1). It can
recursively be divided in smaller lists and sublist.

When computing the initial wait-values, the goal is
to distribute processes such, that the minor cycles are
equally filled up. Each execution process of class PCk

can be seen as a list S(start, 2maxpv−k) of minor cy-
cles. The first value for start is zero, i.e., the first
slot in the first minor cycle is used. The distance d
is 2maxpv−pv[p0]. From then on, further lists can be
computed. The difficulty is to keep track of the start
position. Especially, so-to-say left-overs, i.e., empty
lists not used up by class PCk−1, have to be used
when the class PCk−1 is handled.

Table 1 shows as an example a set of processes with
their priority-values pv[], their according waiting-time
2pv[] between executions, and their initial wait val-
ues calculated with the algorithm shown in figure 4.
The interested reader can try to find a time-optimal,
well balanced schedule of the processes (of course
without using the pre-computed wait-values). The
time-optimal, well balanced schedule computed by B-
scheduling is shown in table 2.

6 Conclusion

Behavior-oriented robotics is based on the distribu-
tion of control over various processes running in vir-
tual parallel. Scheduling these processes, i.e., assign-
ing processing power to them, is a non-trivial task.

Existing approaches from the field of real-time sys-
tems mainly focus on the fulfillment of deadlines. For
control, it is also important that behavior-processes
are executed as regular as possible in addition. Here,
the novel algorithm of B-scheduling is presented which
handles behaviors running on different time-scales,
represented through so-called exponential effect pri-
orities. B-scheduling ensures both desired properties
for behavior-control, namely time-optimal and period-
ically balanced execution of processes.

References

[Ark87] R. C. Arkin. Motor schema based navigation
for a mobile robot. In Proc. of the IEEE Int.

Conf. on Robotics and Automation, pages
264–271. 1987.

[Ark92] R. C. Arkin. Cooperation without Commu-
nication: Multiagent Schema-Based Robot
Navigation. Journal of Robotic Systems,
9(3):351–364, 1992.

[Bir98] Andreas Birk. Behavior-based Robotics, its
scope and its prospects. In Proc. of The 24th

Annual Conference of the IEEE Industrial

Electronics. IEEE Press, 1998.

[Bro86] Rodney A. Brooks. A Robust Layered Con-
trol System for a Mobile Robot. In IEEE

Journal of Robotics and Automation, volume
RA-2 (1), pages 14–23. apr, 1986.

[Bro90] Rodney A. Brooks. The Behavior Lan-
guage; User’s Guide. Technical report, Mas-
sachusetts Institute of Technology, A.I. Lab.,
1990.

[Bro91] Rodney Brooks. Intelligence without reason.
In Proc. of IJCAI-91. Morgan Kaufmann,
San Mateo, 1991.

[BW97] Alan Burns and Andy Wellings. Real-

Time Systems and Programming Languages.
Addison-Wesley, 1997.

[CA98] Ronald C. Arkin. Behavior-Based Robotics.
The MIT Press, 1998.

[LL73] C. L. Liu and James W. Layland. Schedul-
ing Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of

the ACM, 20(1):46–61, jan, 1973.

[LSD89] I. Lehoczky, L. Sha, and Y. Ding. The
Rate Monotonic Scheduling Algorithm: Ex-
act Characterization and Average Case Be-
havior. In IEEE Computer Society Press, ed-
itor, Proceedings of the Real-Time Systems

Symposium - 1989, pages 166–171. IEEE
Computer Society Press, Santa Monica, Cal-
ifornia, USA, dec, 1989.

[Mel83] Mellichamp. Real-Time Computing. Van
Nostrand Reinhold, New York, 1983.

[Ste91] Luc Steels. Towards a theory of emer-
gent functionality. In Jean-Arcady Meyer
and Steward W. Wilson, editors, From Ani-

mals to Animats. Proc. of the First Interna-

tional Conference on Simulation of Adaptive

Behavior. The MIT Press/Bradford Books,
Cambridge, 1991.

[Ste94] Luc Steels. The artificial life roots of artifi-
cial intelligence. Artificial Life Journal, 1(1),
1994.

[You82] SJ Young. Real Time Languages. Ellis Hor-
wood, 1982.

