
final version in: Lawrence J. Fogel, Peter J. Angeline and Thomas Bck (Ed.),
Evolutionary Programming V, The MIT Press, 1996

Learning Geometric Concepts with an Evolutionary Algorithm

Andreas Birk

Universität des Saarlandes
c/o Lehrstuhl Prof. W.J. Paul, Postfach 151150, 66041 Saarbrücken, Germany

cyrano@cs.uni-sb.de
http://www-wjp.CS.Uni-SB.DE/∼cyrano/

Abstract

We present a system that is able to learn descriptions of pic-

tures with an evolutionary algorithm approach. The descrip-

tions are programs in a turtle-graphics language and the de-

scribed pictures are scenes from an environment with a robot-

arm acting in a blocks-world. A measure of similarity of pic-

tures is presented which can be computed fast and supplies

gradient information with regard to translation, rotation and

expansion of objects.

The algorithm is very qualified for the classification of large

sets of pictures as objects which, once recognized, are re-

found quickly. Even if they are in different shapes and ori-

entations or in large composed scenes. The approach differs

from genetic programming as three simple problem specific

operators are used instead of crossover.

1 Introduction

An important property of intelligence is the ability to
learn. Therefore, it is interesting to build and inves-
tigate artificial learning systems. At the Universität
des Saarlandes systems are developed, that are able
to build autonomously theories as short descriptions of
large amounts of perceived data [5, ?, 1, 2]. One result is
a system, that learns from scratch to control a real world
robot-arm in a blocks-world environment. The control-
mechanism learned is a kind of classifier-system i.e., in
response to a classification of the camera-input, an ap-
propriate action of the robot-arm is chosen and executed
[4, 3].

The environment of the system consists of a black
robot-arm with a red triangular gripper, colored building
blocks on a black background and a camera which looks
perpendicularly at the working-area (figure 1). Pictures
from the camera are therefore composed of simple geo-
metric objects. Resolutions of the pictures range from
60 × 60 to 300 × 300 pixels with 8 colors.

The task of the evolutionary algorithm presented in
this paper is to find programs in a turtle-graphics lan-

guage that describe the pictures from the camera. Be-
cause a descriptive program is in general immensely
shorter as the described picture, this is a data compres-
sion.

The remainder of the paper is organized as follows.
In section two evolutionary algorithms are defined in a
general way. In section three a measure of the similarity
of pictures is presented and discussed. The particular
algorithm is introduced in section four. In section five
results are given. Section six concludes the paper and
presents further work.

2 Evolutionary Algorithms

Evolutionary algorithms can be viewed as the most gen-
eral term for all forms of heuristic search techniques,
that imitate the principle of evolution in nature i.e., they
work with a set of competing potential solutions of the
problem which evolve according to rules of selection and
transformation.

More precisely, an evolutionary algorithm operating
on a problem space P proceeds in iterations called
generations. In each generation i ∈ NI a set Si ⊂ P

of fixed cardinality s, called population, is generated.
The members of a population are called individuals. The
fitness-function ffit : P → RI assigns a value called
fitness to each individual.

The first population S1 is generated in a random fash-
ion. Population Si is generated from population Si−1 us-
ing selection and transformation operators. Given an indi-
vidual and its fitness, a selection operator Sel : P×RI →
{0, 1} decides if an individual from population Si−1 is
used as input of a transformation operator. A transfor-
mation operator Tr : 2P → P creates a new element of
Si from an arbitrary number of elements of Si−1. As
the transformation operators are focusing attention on
high fitness, it is expected that during the search pro-
cess increasingly better solutions are found. Very com-
mon transformation operators are reproduction (passing
an individual from Si−1 to Si unaltered), mutation (an

3 Similarity of Pictures 2

Robotarm

(yellow)
Buildingblock

Robotgripper
(red)

Background
(black)

(black)

Camerapicture

Fig. 1: Block-world with robot-arm

individual is changed in a random fashion) and crossover

(subparts of two individuals are swapped).

We prefer above described view of an evolutionary al-
gorithm — as process of selection and transformation

with arbitrary operators — to the more common view —
based on the usage of special operators — for following
reason. The intension of pushing some operators — as
e.g. crossover — to a kind of must is to get one algo-
rithm that is universal i.e., independent of the tasks to
be solved. Though this intension is nice, it seems not to
be practical. This is indicated for example by the many
different versions of crossover used in different applica-
tions.

There are four commonly used classes of evolution-
ary algorithms: genetic algorithms [7, 8], evolutionary
programming [6], evolutionary strategies [12, 11] and ge-
netic programming [10, 9]. As the domain of the problem
described in this paper consists of programs, genetic pro-
gramming would be the standard way to solve the task
with an evolutionary algorithm. But as some experi-
ments with genetic programming had very poor results,
we decided to develop a new algorithm. So, we invented
operators that are more problem specific than crossover,
the main operator in genetic programming. As men-
tioned above, we believe that this viewpoint — to use
problem-specific operators rather then universal ones —
can be fruitful for most applications.

The main operator used in our algorithm is hill-

climbing on constants of the programs. It is based on our
measure of similarity of pictures, which supplies gradi-
ent information with regard to translation, rotation and
expansion of objects. In addition to hill-climbing an op-
erator for concatenating two programs and an operator
for splitting one program into two is used.

3 Similarity of Pictures

The concrete task of learning picture descriptions can
be stated as follows. Given a pixel array a, the current
camera output, find a (short) program p that describes a

i.e., the output ap of p is equal to a. To solve this prob-
lem with an evolutionary algorithm, a measure for the
similarity of pictures ap and a has to be provided. The
similarity is the main factor in determining the fitness of
program p.

The task of measuring the similarity of pictures is non-
trivial. For instance the naive trial of counting the num-
ber of pixels with the same color leads to a function which
is in most cases – when objects are not overlapping –
meaningless.

A useful measure is described in [1], which is based on
the idea that a pixel in picture a is attracted from a pixel
of same color c in picture a′ by a “force” according to a
potential-field (as known from physics). Unfortunately,
the function depends on some parameters, which must
be carefully set, and cannot be computed fast.

4 The particular Algorithm 3

Therefore, our picture-distance-function D was devel-
oped as a measure of the difference between two pixel
arrays a and a′:

D(a, a′) =
∑

c∈C

d(a, a′, c) + d(a′, a, c)

d(a, a′, c) =

∑
a[p1]=c min{md(p1, p2)|a

′[p2] = c}

#c(a)

where

• C denotes the set of colors of constant size,

• a[p] denotes the color c of pixel array a at position
p = (x, y),

• md(p1, p2) = |x1 − x2|+ |y1 − y2| is the Manhattan-
distance between p1 and p2,

• #c(a) = #{p1|a[p1] = c} is the number of pixels in
a with color c.

So, the picture-distance-function is a sum over all col-
ors of the average Manhattan-distance of the pixels with
color c in picture a to the nearest pixel with color c in
picture a′ (d(a, a′, c)) and the average distance vice
versa (d(a, a′, c)).

Note, that the picture-distance-function is symmet-
rical, but d(a, a′, c) might be not equal to d(a, a′, c).
Consider picture a being a part of picture a′ in re-
gard to color c i.e., ∀i : a[i] = c =⇒ a′[i] = c and
∃j : a′[j] = c ∧ a[i] 6= c. Then d(a, a′, c) = 0 and
d(a, a′, c) > 0.

The picture-distance-function has two important prop-
erties:

• It reflects the “natural feeling” of the similarity of
pictures as it has the expected gradients according
to translation, rotation and expansion of objects.
More precisely, assume a picture a showing an object
and a picture a′ showing the same object translated,
rotated or expanded. A decrease in the euclidian
distance, the rotation angle or expansion factor of
the object in a′ with regard to its representation in
a leads frequently to a decrease of D(a, a′).

• It can be computed in a time that is linear in the
number of pixels.

The less observable part of the linear time implementa-
tion of the picture-distance-function is the computation
of the numerator in the d(a, a′, c)-equation. It is based
on a so-called distance-map d-mapc for a color c. The
distance-map is an array of the Manhattan-distances to
the nearest point with color c in picture a′ for all posi-
tions p1 = (x1, y1):

d-mapc[x1][y1] = min{md(p1, p2)|a
′[p2] = c}

The distance-map d-mapc for a color c is used as
lookup-table for the computation of the sum over all pix-
els in a with color c. Figure 2 shows an example of a
distance-map.

The algorithm shown in figure 3 computes a distance-
map for a picture of size n×n in time linear in the number
of pixel. Figure 4 shows the working principle of the
algorithm, which is based on relaxation. The algorithm
consists of three parts with two basic loops in each case.
The first part is an initialization of d-mapc: the values
of positions with color c are set to Zero, the values of
others are set to Infinity. The next two parts of the
algorithm are relaxation steps: every position is visited
and updated; one time going from “upper left” corner to
“lower right” and next time vice versa. The updating is
done as follow: the value of a visited position is set to
the Minimum of its current value and the value of one of
its neighbors plus One.

4 The particular Algorithm

4.1 The Fitness-Function

A crucial point in designing an evolutionary algorithm
is the choice of the fitness function. As an evolutionary
algorithm may iterate many generations on a possibly
large population, the fitness function has to be calculated
very often. Therefore, it should be quickly computable.
The picture-distance-function, which is the main element
of the soon defined fitness-function, has this property as
explained in the previous section. However, it is even
possible to speed it up.

Let a denote the target picture which is to be described
— the current camera output — and a′ the output pic-
ture of a potential descriptive program. The idea of the
speed-up is based on the fact, that a remains fixed during
the run of the evolutionary algorithm.

The modified picture-distance-function D′ is defined
as

D′(a, a′) =
∑

c

d(a, a′, c) +
max{0, #c(a

′) − #c(a)}

#c(a′)

So the computation of d-mapc is only necessary for the
target picture a. This must only be done once (for every
color c) before the start of the evolutionary algorithm.
The run-time of the computation of D′(a, a′) is now lin-
ear in the number of pixels of a′ with color c, which is in
general much smaller than the number of all pixels.

The speedup is achieved by a decrease in the power of
exploiting useful gradient-information. Various experi-
ments revealed that for this particular task a positive
trade-off is gained.

Finally, the fitness-function ffit : L∗
T × Pic → RI is

defined as

ffit(prog, a) = − (D′(a, aprog, c) + len(prog))

4 The particular Algorithm 4

= pixel with color c

3 2 2 1 2 3 4 5
2 1 1 0 1 2 3 4
1 0 0 0 0 1 2 3
2 1 1 1 1 0 1 2
2 1 0 1 1 0 0 1
3 2 1 0 1 0 0 1
3 2 1 0 0 0 1 2
4 3 2 1 1 1 2 3

d-mapc

Fig. 2: A distance-map d-mapc

for y = 0 to n-1 {
for x = 0 to n-1 {

if a′((x,y)) = c
d-mapc[x][y] = 0

else

d-mapc[x][y] = ∞
}

}
for y = 0 to n-1 {

for x = 0 to n-1 {
h = Min{d-mapc[x-1][y] + 1, d-mapc[x][y-1] + 1}
d-mapc[x][y] = Min{d-mapc[x][y], h}

}
}
for y = n-1 to 0 step -1 {

for x = n-1 to 0 step -1 {
h = Min{d-mapc[x+1][y] + 1, d-mapc[x][y+1]+1}
d-mapc[x][y] = Min{d-mapc[x][y], h}

}
}

Fig. 3: The algorithm for computing d-mapc

5 Results 5

= neighbor= visited position

Relaxation Step 2Relaxation Step 1Init

0 0 0
0

0
0

0
0

0 0

00
0

0

8
8

0

8
888

8 8 8 8
88

888
88

8
8

8 8
8

8

8

8 8 8
88

8
8

8

8

8 8
8888

88 8 8 8

8
8

8

8
8

Fig. 4: The working principle for computing d-mapc

where L∗
T denotes the space of programs, Pic the space

of pixel-arrays, prog a program with output aprog, a the
target picture and len(prog) the number of commands in
prog. Note that for keeping the convention, that higher
fitness means better solution, ffit is defined to be nega-
tive.

4.2 The Turtle-Graphics Language

The turtle-graphics language LT which is used to con-
struct the programs consists of the following simple com-
mands:

Move x y c : moves the turtle to point (x, y) and assigns
color c to it.

Draw α l c : draws a line in color c from the current
position of the turtle with angle α and length l and
moves the turtle to the end of the line.

Line α l c : Similar to Draw, but the position of the tur-
tle remains unaltered.

For i = k1 to k2 step s { command-block }: is used as
for-loop command. The loop-variable can only be
used in the command-block of the loop.

End : terminates a program.

Figure 5 shows an example LT -program which pro-
duces a red triangle as output.

4.3 The concrete Operators

As selection operator we use tournament selection i.e.,
two individuals are chosen randomly from population
Si−1 and the one with higher fitness is selected for trans-
formation. This is repeated as long as individuals are
needed by transformation operators to generate popula-
tion Si.

As transformation operators we use reproduction and
the new developed operators hill-climbing on constants,
conc and split.

Hill-climbing on constants : LT → LT

Randomly chooses a constant in a program and per-
forms a hill-climbing-step on it, according to mini-
mization of the picture-distance-function. In doing
so, the probability of stepping width W is inversely
proportional to W .

Conc : LT × LT → LT

Takes two programs and concatenates them to one.

Split : LT → LT × LT

Splits a program into two new ones at a randomly
chosen place. Command-blocks of a for-loop cannot
be split.

5 Results

The system is set up as follows. The population-size s is
set to 50. The first population is generated by randomly
generating programs with lengths between 1 and 10 com-
mands. The following populations are generated using
the selection-operator and the transformation-operators.
In the most successful experiments we randomly chose
the transformation-operators with following probabili-
ties: hill-climbing 0.6, conc 0.2, split 0.1 and reproduc-
tion 0.1. Due to the more frequent use of conc than split
the number of individuals generated by transformation
is less then #Si−1, hence Si is filled up with randomly
generated programs.

In experiments on a 40MHz SPARCstation 10/51 us-
ing pictures from simulations and the real world as in-
put, various geometric figures were found. Using e.g.
100× 100-pixel-pictures, a quadrangle was found on the

5 Results 6

0 1 2 3 4 5 6 7 8 9

0
1
2
3
4
5
6
7

8
9

: move : line

: draw

 draw 75 1 redO

move 0 1 red

for i = 11 to 1 step - 2

end

{

}

 line 30 i redO

Fig. 5: A program producing a red triangle

Fig. 6: A partially hidden block

6 Conclusion and further Work 7

average in 7 hours and a triangle in 23 hours, both in
arbitrary form and orientation.

A very interesting feature of the algorithm is, that as
soon as one particular geometric figure is found, any ge-
ometric figure of this kind is recognized very fast. If e.g.
the input picture contains a quadrangle and an individ-
ual in the population is already a quadrangle-program
(with wrong constants), then adaption to the input pic-
ture is done in 3 minutes on average. The same holds true
for triangles which are adapted in 5 minutes on average1

and any other figure. This property can be credited to
the expressive gradients of the picture-distance-function
and the hill-climbing-operator. This view is supported
by the fact that turning down the probability of the hill-
climbing-operator leads to a decrease in this ability.

Another very interesting feature of the algorithm is the
capability of fast recognition of large scenes composed of
“known” objects i.e., objects for which the population
already contains programs. A scene consisting of a tri-
angle and two quadrangles is recognized on average in 14
minutes (if triangle and quadrangle are known), which is
only a few minutes longer than it takes to adapt the con-
stants for the three objects. This property is the effect
of the introduction of the conc-operator.

Both features are very useful for the task of learn-
ing classifications of scenes from a blocks-world. As
described in section 1 the algorithm is used in a sys-
tem that controls a robot-arm. In this task many —
often only slightly different — snapshots are taken, to
which the picture-description-algorithm is repeatedly ap-
plied. By transferring good programs — i.e. programs for
known geometric concepts — from the previous run to
the first population of the next run, an immense speed-
up is gained.

6 Conclusion and further Work

We presented a measure of similarity between two pic-
tures which might be useful for a broad class of prob-
lems, namely the learning of classification of vision data.
The measure is computable fast and supplies gradient
information with regard to translation, rotation and ex-
pansion of objects.

The transformation operators hill-climbing, split

and conc used in the presented evolutionary algorithm
are non-standard. It is not clear whether they are use-
ful for other problem classes. This can only be tested
by appropriate experiments. However, even if these con-
cepts fail on other problem classes, their introduction is
still advantageous as classification of vision data is a fre-
quent (real-world-)problem. Therefore, a fast problem-
dependent-design for this task seems to be justified.

1 These times are strongly dependent on the kind of difference

between the related objects i.e., how many and which type of con-

stants have to be fixed.

An interesting subject for future research is the de-
velopment of hierarchical operators, in addition to the
analysis of further applications of the present operators
to other problem classes. Operators supporting (param-
eterized) subroutine calls would enable the system to dy-
namically adjust inductive bias in an efficient way.

Some recent experiments indicate, that the described
approach is very qualified for recognition of partially hid-
den objects. Figure 6 shows an example: a building-
block (rectangle) is partially covered by a robot-gripper
(triangle). The evolutionary algorithm describes this
scene by a program which first draws a rectangle and
then draws a triangle painting over a part of the rect-
angle. This information can be used to identify the
building-block for automatic image understanding.

References

[1] P. Bergmann, J. Keller, and W.J. Paul. A self-
organizing system for image recognition. In Proc. of

the IASTED Intl. Symp. Machine Learning and

Neural Networks, pages 33–36. ACTA Press, New
York, 1990.

[2] P. Bergmann, W.J. Paul, and L. Thiele. An infor-
mation theoretic approach to computer vision. In
Proc. of Dynamical Networks Workshop. Akademie-
Verlag, Berlin, 1989.

[3] Andreas Birk. Stimulus Response Lernen, ein neues

Machine Learning Paradigma. PhD thesis, Univer-
sität des Saarlandes, Saarbrücken, 1995.

[4] Andreas Birk. Robotic control via stimulus response
learning. In Proc. of The Sixth International Sympo-

sium on Robotics and Manufacturing. ASME Press,
1996.

[5] Andreas Birk and Wolfgang J. Paul. Schemas and
genetic programming. In Intern. Conf. on the Inte-

gration of Elementary Functions into Complex Be-

havior, 1994.

[6] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artifi-

cial Intelligence through Simulated Evolution. Wi-
ley, New York, 1966.

[7] David Goldberg. Genetic Algorithms in Search Op-

timization and Machine Learning. Addison-Wesley,
Reading, 1989.

[8] John H. Holland. Adaptation in Natural and Arti-

ficial Systems. The University of Michigan Press,
Ann Arbor, 1975.

[9] John R. Koza. Genetic programming. The MIT
Press, Cambridge, 1992.

6 Conclusion and further Work 8

[10] John R. Koza. Genetic programming II. The MIT
Press, Cambridge, 1994.

[11] Ingo Rechenberg. Evolutionsstrategie: Optimierung

technischer Systeme nach Prinzipien der biologis-

chen Evolution. Fromman-Holzboog, Stuttgart,
1973.

[12] Hans Paul Schwefel. Numerische Optimierung

von Computer-Modellen mittels der Evolutions-

Strategie. Birkhäuser, Basel, 1977.

