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Abstract. Evolutionary game-theory is a powerful tool to investigate the devel-
opment of complex relations between individuals such as the emergence of coop-
eration and trust. But the propagation of genes is an unrealistic assumption when
it comes to model fast-changing social interactions. We show how a transition
from evolutionary game-theory to learning can be made. Specifically, we show
how cooperation and trust can develop together through social interactions and a
suited learning mechanism.

1 Introduction

Evolutionary game theory [Axe84,Smi82] is a powerful tool for the investigation of
interactions between individuals. It has especially become popular with research on
cooperation (see e.g. [AD94] for an overview), but it also has been applied to many
other domains.

Evolutionary methods are built upon a transfer of encoded information, i.e., genes,
between individuals. This transfer of genes includes two main assumptions. The first
one is the “feasibility of breeding” assumption. Evolution includes the generation of
new individuals and the deletion or death of others. The second one is the “obey mother
nature assumption”. When an off-spring is generated, it has no choice whether to incor-
porate a particular gene or not; the “decision” is made by mother nature or by stochastic
operators in simulated evolution.

Let us examine these assumptions from the perspective of trust as a social phe-
nomenon. On the one hand, genetic evolution is very likely to influence animal and es-
pecially human behavior also in respect to social interactions. On the other hand, social
developments happen on a completely different time-scale than evolution. Therefore, it
should be clear that evolution can not serve as the only explanation. The work presented
here shows a possible way out of the problems with evolutionary schemes. Instead of
evolution, a learning approach somewhat in the spirit of selectionism [Ede87,Ede85] is
used here. The main feature of this learning algorithm is that it is based on a pool of
potential solutions or so-called hypotheses in each individual. This type of algorithm
can also be highly efficient for the learning of individual skills as demonstrated in ex-
periments with learning eye-hand coordination in simulations and real robot systems
[BP00,Bir96] and experiments on learning several basic behaviors in a robotic ecosys-
tem [Bir98].



This paper builds on previous results based on evolutionary game theory [Bir00].
It is shown here that cooperation and trust in a continuous-case N-player prisoner’s
dilemma can not only evolve, but can also be learned. In the general framework of this
research, trust is based upon dynamical processes. Other commonly used notions of
trust build upon compliance-based approaches, using for example standardized proto-
cols and cryptography. The dynamical notion of trust which is used here guarantess no
“absolute” security as trusted systems can cheat. But the process has the important ad-
vantage of being completely open and robust. A selection of different approches to trust
can be found for example in [CCe00].

In this research framework, the basis for trust is seen as an intrinsic property of each
individual in form of the so-called trustworthiness. The trustworthiness of an individual
��� is an objective measure for another individual ��� of the desirability of interactions
with ��� . If the, possibly continuous, trustworthiness of ��� is high, it is highly desirable
for ��� to engage in trust-based interactions with ��� . The trustworthiness of ��� can be
dynamic and it is not directly perceivable by ��� . Any process which tries to establish an
approximation of the trustworthiness of ��� is denoted as building trust in this research
framework.

Processes for building trust often include a non-rational component in the sense
that decisions on how to deal with another individual are not only based on previous
interactions with this individual, but also on other subjective criteria, such as outer ap-
pearance, recommendations from others, and so on. Subjective processes for building
trust are extremely important as they allow decisions whether to interact or not with
unknown individuals, i.e., individuals who have not been encountered in previous inter-
actions. Labels, which do not bear meanings in the beginnings of the experiments, and
preferences to interact with individuals carrying certain labels are used here to model
the building of trust.

The rest of this paper is structured as follows. In section 2, the basic ideas of the
transition from evolutionary game theory to social learning are explained. A contin-
uous case N-players prisoner’s dilemma is introduced in section 3 as a basis for the
experimental framework. In section 4, the concrete learning algorithms and results are
presented. Section 5 concludes the paper.

2 Selectionist Learning within Individual Minds

Evolutionary algorithms with their major classes Genetic Algorithms [Gol89,Hol75],
Evolutionary Programming [FOW66], Evolutionary Strategies [Sch77,Rec73] and Ge-
netic Programming [Koz94b,Koz92], imitate, or at least are inspired by, the principle of
evolution in nature. They use a set of potential solutions (the population) to a particular
problem or domain. Populations are generated in iterations (generations) using oper-
ations for selection and transformation. In doing so, the selection and transformation
operations focus on good, in respect to a fitness function, members of the population.
As better members are more likely to be chosen an improvement over time is expected.

For the sake of simplicity, we refer here to any representation of a potential solution
as a gene, typically a fixed-length binary string or a parse-tree. When using evolutionary
algorithms to investigate artificial “living” systems as in the fields of evolutionary game



theory [Axe84,Smi82] or evolutionary robotics [GHF94,WFP99,DBB98,FM94,Koz94a],
a single gene determines a crucial aspect of an individual system, such as its morphol-
ogy [Sim94], its control [FM94], or highlevel behavior like a strategy in social interac-
tions [AH81].

Here we propose a mechanism which is not based on evolution, but which is a
learning mechanism inspired by the evolutionary driving forces of selection and the
generation of diversity, somewhat in the spirit of selectionism [Ede87,Ede85]. Here a
crucial aspect of an individual system is not determined by a fixed gene but by a so-
called hypothesis. For example, in the domain of robot-control, a certain hypothesis

�
would for example represent that given a situation � the behavior � would be appro-
priate. The crucial aspect of a hypothesis is that, unlike in the case of a gene, there is
not a single hypothesis for a particular problem. Instead, an individual has multiple hy-
potheses about potential solution for a single instance from the domain. In the case of
robot-control, this means that given a situation � there is a set of hypotheses ��� linking
� to several possible behaviors.

Hypotheses are ranked within the individual by a so-called preference function���
	
���� . The best hypothesis according to this ranking is most likely to be activated,
e.g., to be expressed as an behavior or to serve as a (partial) model of the world. Lower
ranking hypotheses also have a chance to become activated. The retrieval of the hy-
pothesis which becomes active can for example be done with the roulette-wheel (RW)
principle as follows. Given a hypotheses-set ��� and the preferences ���
	
�� � � for all�

in ��� , the likelihood ���
� � that a particular hypothesis
���

is retrieved from ��� for
activation is proportional to its preference, i.e.,

���
� � � � � is activated �������
	
�� � � �����
����� �

���
	
�� � �

Note that it is important not to confuse RW-retrieval with RW-selection from evolu-
tionary algorithms. In the case of evolutionary selection, a gene is transferred into the
next generation. If this does not happen, the gene dies out, i.e., it disappears from the
population. When a hypothesis

�
is selected by RW-retrieval, it is applied and tested.

This does not necessarily result in a change in the set ��� of hypotheses with which
�

is in concurrency.
Through the retrieval and activation of

�
, information about the usefulness of

�
is

gathered and ���
	
�� � � is updated. This in turn can lead to changes of
�

and even its
elimination, but as mentioned above, this is not necessarily the case. With evolution,
potential solutions are encoded in genes and transferred among individuals as gen-
erations progress. With multiple-hypotheses learning, the potential solutions in form
of hypotheses are never transfered between different individuals. Nevertheless, simi-
lar hypotheses-sets in different individuals and coordinated usage of hypotheses can
emerge through suited social interactions as will be shown later on in experiments.

As already mentioned in the introduction, variations of the learning algorithm pre-
sented here have also been applied to learning of individual skills on the level of sensor-
motor control and on the level of behaviors for robots in real world environments
[BP00,Bir96,Bir98]. In these experiments, it has been shown that a pool of potential
solutions in the “mind of a single individual increases the robustness against distortions



from real world noise and it can increase the learning speed through the re-use of partial
solutions found in the pool.

3 The Experimental Framework

3.1 A Continuous-Case N-Player Prisoner’s Dilemma

The basis for the experiments described later on is a version of the prisoner’s dilemma
with � players and continuous cases of investment and payoffs (CN-PD). It is moti-
vated and described in more detail in [Bir00,BW00].

Each agent ��� has a so-called cooperation-level � ������� 	�
 	����
 	�� . In a game, the
cooperation-level determines the agent’s investment � � , which serves for the benefit of
the group (including ��� itself). Concretely, the investment is determined by:

� � � � ���������

Let �� � denote the average cooperation-level of the group, i.e.:

�� � � �
��� � ��� � ��� � �

The so-called gain � � for an agent ��� is determined by:

� � � �� ���� 	�	

Roughly, all investments are collected, some profit is generated with the invest-
ments, and finally investments and profit are distributed among the investors. The dilemma
arises as investments and profit are equally shared among all. Thus there is the temp-
tation to invest less than the others and to exploit their contribution to the profit. This
becomes even clearer when we look at the netgain or payoff for each agent. This payoff� ��� for an agent ��� is the difference between gain and investment, i.e.:

� ��� � � ��! � �� �
����"#��� � � " � � �� 	�	�! � ���$�%���

So, on the one hand, it is in the interest of each agent that there is a high overall
investment. On the other hand, there is the temptation to leave the task of investing
to others, as the overall gain is distributed among all, independent of the individual
investment. Note, that the payoff for an agent depends on its own cooperation level � �&�
and on the average cooperation level �� � . Its profit function �%')(�� 	�*�#�,+-� 	�*�#�$.0/� is
thus ��' � � ���1* �� ����� � ������!����32 �� �4�� 	�	

Based on this, we can extend the terminology for payoff values in the standard
prisoner’s dilemma, with payoff types for cooperation (C), punishment (P), temptation
(T), and sucking (S), as follows:

– Full cooperation as all fully invest: 536�7 7 � ��' �8�
 	�*��
 	 � �:9��



– All punished as nobody invests: � 6�7 7 � ��' � 	�
 	�* 	�
 	 � � 	
– Maximum temptation: ���36�� � ��' � 	�
 	�* ���$�� �	� ��	
– Maximum sucking: ���36�� � ��' � 	�
 	�* �� ��
:!49��

For � ��* �� ��� 	�
 	�*��
 	 , we get the following additional types of payoffs, the so-called
partial temptation, the weak cooperation, the single punishment, and the partial suck-
ing. They are not constants (for a fixed � ) like the previous ones, but actual functions
in � � ��* �� ��� . Concretely, they are sub-functions of �%' � � ��* �� ��� , operating on sub-spaces
defined by relations of � � in respect to �� � .

3.2 Strategies for Iterated Games

When playing iterated games, the concept of a strategy [Axe84] can be used to deter-
mine the behavior of an agent. This means, the outcome of previous games is used to
compute whether to cooperate or not in the recent game, or to compute the degree of
cooperation in the continuous case [RS98].

In [BW00] it is shown that the so-called justified snobism (JS) is a successful strat-
egy for the continuous case N-player prisoner’s dilemma. JS cooperates slightly more
than the average cooperation level of the group of � players if a non-negative payoff
was achieved in the previous iteration, and it cooperates exactly at the previous average
cooperation level of the group otherwise.

Justified-Snobism (JS):
� ��� ��� !  �	� 	 ( � ��� ��� � � �� � ��� !  �$2 ��� �
� ��� ��� !  �	� 	 ( � ��� ��� � � �� � ��� !  �

So, JS tries to be slightly more cooperative than the average. This leads to the name
for this strategy as the snobbish belief to be “better” (in terms of altruism) than the
average of the group is somehow justified for players which use this strategy.

In addition, following strategies are used in the experiments described lateron to
challenge JS:

Follow-the-masses (FTM) : match the average cooperation level from the previous
iteration, i.e., � ��� � � � � �� ��� � ! #�

Hide-in-the-masses (HIM) : subtract a small constant � from the average cooperation
level, i.e., � ��� � � � � �� ��� � ! #� ! �

Occasional-short-changed-JS (OSC-JS) : a slight variation of JS, where occasionally
a small constant � is subtracted from the JS investment

Occasional-cheating-JS (OC-JS) : an other slight variation of JS, where occasionally
nothing is invested

Challenge-the-masses (CTM) : Zero cooperation when the previous average cooper-
ation is below one’s cooperation level, a constant cooperation level � � otherwise,
i.e.,

– � ��� � � ! #��� �� � ( � ��� � � � � � �
– � ��� � � ! #��� �� � ( � ��� � � � � 	



Non-altruism (NA) : always completely defect, i.e., � ��� � � � � 	
Anything-will-do (AWD) : always cooperate at a fixed level, i.e., � ��� � � � � � �

In evolutionary game theory, each agent has exactly one strategy, which is encoded
in a single gene. The survival of the agent and the number of its off springs depend on
the performance of this strategy. Here, each agent has a set of strategies from which
he can choose. This means strategies are encoded as multiple-hypotheses. The set of
strategy-hypotheses for an agent ��� is denoted with ������ .

When playing games, an agent must first retrieve a strategy � from ������ . This is
done using roulette-wheel retrieval as introduced above. The outcome of the game is
then used to update the preference ���
	
�� � � for the hypothesis that strategy � is useful
for getting a high payoff in a game.

3.3 The Basis of Trust

Much like in [Bir00], trust here is expressed by preferences of an agent to be grouped
together with certain other agents in a game. Again, subjective criteria in the form of la-
bels, as a kind of outer appearance of agents, is used for this. The two major differences
with previous work are that here

– the emergence of cooperation and trust is grounded in learning instead of using
evolution, and

– agents can change their labels, i.e., there is no a priori assignments of labels to
individuals.

The basic principle of the so-called trust-function stays the same as in previous
work. So, the function � ��� � �1� (�� . � 	�
 	�*��
 	�� of an agent ��� maps a weight � to each
possible label � " , such that � ��� � �8� � � " � � � . The weight � represents ��� ’s preference to
interact with an agent with label � " . If � is high, i.e., close to �
 	 , ��� prefers to interact
with agents with label � " , or it simply trusts them. If � is low, i.e., close to 	�
 	 , ��� prefers
not to interact with agents with label � " , or it simply does not trust them.

As mentioned above, individuals do not have a fixed label in the experiments re-
ported here. Instead, the labels are represented within each agent as multiple-hypotheses.
The set of label-hypotheses for an agent ��� is denoted with ��� 7� . Before each game, an
agent must decide which label it signals to the other agents. This will influence the
formation of groups and the outcome of the games. So choosing a label is a hypothesis-
retrieval and hypothesis-activation for an agent. The hypothesis is that when � � signals
this particular label, the outcome of the next game will be beneficial for � � .

4 Learning Strategies, Signals, and Trust

4.1 The Structure of the Iterated Games

Before the algorithm running within an agent is presented in more detail, let us first
have another look at the overall game. There is a set of agents with a fixed cardinality
	 � , the so-called society � . The society plays iterated CN-PDs in time-steps � . At the



1 form group ���
2 /* randomly initialize the group � with one agent */

3 �����
4 ���
	�������
5 � = random select ( ���
	��� )

6 �������������
7 ���
	���������
	�����������
8 /* add agents to � based on the trust of the agents already in � */
9 while �������

10  �! "$#%�'&)(+*-,�./! "10��3254-6-7�8:9�;=<�*>9/?�./! "10
11 �+@ = roulette-wheel selection ( ���
	��� , *-,�.10 )
12 ���3���)���+@A�
13 ���
	���������
	�����������
14 �
15 �

Fig. 1. Group formation based on the trust-functions.

beginning of each time-step, the society is split into groups of size � biased by the
individual trust-functions.

The concrete algorithm for doing this is shown in Figure 1. First, the group is ran-
domly initialized with one agent. Then, additional agents are put into the group. In
doing so, the likelihood of placing an agent ��� who signals label � into the group is
proportional to the summed trust in � of all agents which are already in the group. Note
that agents are true individuals in the sense that each agent can only be once in one
particular group during a game. In evolutionary games in contrast, agents can multiply
by generating offspring and thus be represented several times in several groups.

After the groups are formed, several CN-PD games are played and payoffs for each
agent are generated. The payoffs are used to update the preferences of the different
hypotheses as will be shown in the next section. Afterwards, the groups are mixed
together into a uniform society again and the overall process proceeds to the next time-
step, �,2  .

4.2 The Algorithm within an Agent

Figure 2 shows the algorithm running within an individual agent. Most of it has been
explained and motivated above. What remains to be defined is the update of the prefer-
ences of different hypotheses (lines 7 to 10 for labels and lines 12 to 15 for strategies).

The main idea for the update is simply that the running average of payoffs is used as
indication of how preferrable a certain strategy or label is. As a minor problem, negative
payoffs have to be taken care of. To ensure that the preferences never become negative



1 behavior agent � " in game � � 9����
2 RW-retrieve label !
3 signal ! /* and the agent is placed in a group */

4 RW-retrieve strategy *
5 play *
6 /* update preferences for labels */

7 if ��� "��
	
8 ��;��� ./!A0 � 9�� ��������;��� ./!A0 � 9������1.�������0������ "
9 else

10  �! @ #��%���" ��� !/�:(���;��� ./! @ 0 � 9�����������;��� ./! @ 0 � 9������1.�������0 �"! ��� "#!
11 /* update preferences for strategies */

12 if ��� "��
	
13 ��;��� .1* 0 � 9�� ��������;��� .1* 0 � 9������1.�������0������ "
14 else

15  '*-@'#$�%��%" ���=*=�:(���;��� .1*-@ 0 � 9�����������;��� .1*-@
0 � 9��&���1.�������0��'! ��� "(!
16 /* update trust-function */

17 9�;=<�*>9 "�./! ?=0 � 9�����.��)����0��-9�;=<�*>9 "�./! ?=0 � 9������
18 *�������� " � 9�������� � ���,+�#�� with - .A�,+ 0���! ? �=�>�/.
19 �

Fig. 2. The behavior of an individual agent in a single game in a Pseudo-Code.



as the standard roulette-wheel principle is only applicable with positive weights. There-
fore, negative payoffs do not decrease the preference for a strategy � , which was active
in the last time-step, but they lead to an increase in the preference of all other strategies
except � (line 10). The same holds in respect to labels (line 15).

4.3 Results

Fig. 3. The simultaneous learning of suited strategies, signaled labels, and trust-functions leads
to an emergent cooperation.

In the experiments reported here, the size 	 � of the society is 100, the group sizes
are always 10 agents. After grouping, the agents always play 50 games together to
collect payoffs before they proceed to the next time-step and new groups are formed.
The preferences for the different hypotheses are randomly initialized for both types,
i.e., for strategies as well as for labels.

As shown in figure 3, the simultaneous learning of strategies, signaled labels, and
trust-functions leads to an emergent cooperation, i.e., an increasing average coopera-
tion level. This cooperation is nevertheless very vulnerable. Unlike evolutionary exper-
iments where the JS as strategy and the trust into a particular label become dominant
and stable, the multiple-hypotheses learning leads to dynamic scenarios.

Especially, when the preferences for JS and certain labels become very high and sta-
ble, some agents will (re-)discover in their hypotheses-sets ����� and ��� 7 non-altruistic



strategies and how to use deceptive labels. Note, that unlike in the genetic case, these
“bad behaviors” can never die out. They are always present, even if they are sometimes
rarely observered due to small preferences.

So, when the preferences for JS and certain labels become very high and stable in the
majority of the society, activating non-altruistic behaviors and deceptive signals is very
profitable as a high amount of general goodwill can be exploited. Agents which retrieve
these hypotheses by chance receive high payoffs and therefore increase their preference
for them substantially. Therefore, they are likely to retrieve and activate them in the next
round again, and so on.

A substantial break in the general cooperativeness and trust can hence occasionally
be observed. In a snowball reaction, more and more agents discover “bad behaviors”.
But the more agents do so, the less profitable this becomes. Therefore, the society is
then able to recover again.

5 Conclusion

The work presented in this paper is set in a research context where trust is modeled as
dynamic preferences of whether to engage in social interactions with others. The ba-
sis of this model is an intrinsic property called trustworthiness in every individual � .
Trustworthiness of � is an objective measure for other individuals regarding whether it
is desirable to engage in an interaction with � . But trustworthiness cannot directly be
perceived. Building trust therefore relates in this model to the estimation of trustwor-
thiness. Subjective criteria like the outer appearance are important for building trust as
they allow to handle unknown agents for whom data from previous interactions does
not exist. Hence, trust is represented as preference to be grouped together with agents
with a certain label to play a game.

In previous work, it was shown that stable relations of trust can evolve and that
the co-evolution of trust can boost the evolution of cooperation. In general, evolution-
ary game-theory is a well known tool for investigating basic properties of interactions
between individuals. But the transfer of encoded information, i.e., genes, is unsuited
as main basis for models of social interactions. Social interactions do not operate on
the time-scale of natural evolution nor do they provide such powerful means of infor-
mation exchange as the transfer of genes. Here, we show how learning can be used to
overcome this severe drawback. The so-called multiple-hypotheses approach is used to
successfully develop cooperation and trust simultaneously in scenarios modeled by a
continuous-case N-player prisoner’s dilemma.
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